Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Decacarbonylbis(methylcyclopenta-dienyl)-tetrahedro-diiridiumdimolybdenum and decacarbonylbis(tetra-methylcyclopentadienyl)-tetrahedrodiiridiumdimolybdenum dichloromethane hemisolvate

Nigel T. Lucas and Mark G. Humphrey*

Department of Chemistry, Australian National University, Canberra ACT 0200, Australia
Correspondence e-mail: mark.humphrey@anu.edu.au

Received 31 October 2001
Accepted 2 January 2002
Online 20 February 2002
The two title compounds, $\left[\mathrm{Mo}_{2} \mathrm{Ir}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{2}(\mathrm{CO})_{10}\right]$ and $\left[\mathrm{Mo}_{2} \mathrm{Ir}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{13}\right)_{2}(\mathrm{CO})_{10}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, respectively, or collectively $\left[\mathrm{Mo}_{2} \mathrm{Ir}_{2}(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}\right)_{2}\right](n=1$ or 4$)$, have a pseudo-tetrahedral $\mathrm{Mo}_{2} \mathrm{Ir}_{2}$ core geometry, an $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}$ group ligating each Mo atom, bridging carbonyls spanning the edges of an MoIr_{2} face and seven terminally bound carbonyl groups.

Comment

The title compounds, tri- μ-carbonyl-1:3 $\kappa^{2} C ; 1: 4 \kappa^{2} C ; 3: 4 \kappa^{2} C$ -heptacarbonyl- $1 \kappa C, 2 \kappa^{2} C, 3 \kappa^{2} C, 4 \kappa^{2} C$-bis $\left[1,2\left(\eta^{5}\right)\right.$-methylcyclo-pentadienyl]-tetrahedro-diiridiumdimolybdenum, (I), and tri-μ-carbonyl-1:3 $3 \kappa^{2} C ; 1: 4 \kappa^{2} C ; 3: 4 \kappa^{2} C$-heptacarbonyl- $1 \kappa C, 2 \kappa^{2} C$,-

(I) $R_{1}=\mathrm{H} ; R_{2}=\mathrm{Me}$
(II) $R_{1}=\mathrm{Me} ; R_{2}=\mathrm{H}, 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$3 \kappa^{2} C, 4 \kappa^{2} C$-bis $\left[1,2\left(\eta^{5}\right)\right.$-tetramethylcyclopentadienyl $]$-tetra-hedro-diiridiumdimolybdenum dichloromethane hemisolvate, (II), have been prepared as part of a general study of tetrahedral mixed group-6-Ir cluster complexes (Lee et al., 1993; Waterman et al., 1996, 1998, 1999; Waterman \& Humphrey, 1999; Lucas et al., 2001). Alkylcyclopentadienyl ligands
provide flexibility in tuning the electronic and/or steric properties of a complex, which should modify the physical properties and derivative chemistry. The chemistry of the cyclopentadienyl analogue of (I) and (II) has been examined in depth. The title compounds have been prepared to broaden this study and their structures are presented here.

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. Both complexes possess pseudo-tetrahedral core geometry and a general ligand disposition of the cyclopentadienyl analogue $\left[\mathrm{Mo}_{2} \mathrm{Ir}_{2}(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (III) (Lucas et al., 1997), with the sole exception that, in (II),

Figure 1
A view of the molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii.

Figure 2
A view of the molecular structure of (II) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii. The disordered solvent molecule is not shown.
the ligands at Mo4 are rotated ca 60° about the metal. The tetramethylcyclopentadienyl group in (II) is thus trans to the Ir1 - Mo4 bond, rather than trans to the Ir2-Mo4 bond, as in (I) and (III).

The core Ir - Ir , Mo-Mo and Ir -Mo bond distances for (I), (II) and (III) show a slight lengthening on increasing the methyl substitution of the cyclopentadienyl ring. In all three structures, the longest $\mathrm{Ir}-$ Mo bond is always trans to the η^{5} $\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}$ group on Mo4, and the shortest $\mathrm{Ir}-\mathrm{Mo}$ bond is the other non-bridged $\mathrm{Ir}-\mathrm{Mo} 4$ vector. As the number of methyl groups increases, the carbonyls bridging the Ir1/Ir2Mo3 bonds become unsymmetrically disposed, moving closer to the Mo atoms. This suggests that electronic factors (the need to redistribute electron density from the increasingly electron-rich Mo atoms) dominate over steric considerations (the need to alleviate the increasing steric pressure from the bulky cyclopentadienyl ligands). The same electronic factors probably explain the presence of semi-bridging interactions for the three Mo-bound carbonyl groups (C31/O31, C41/O41 and $\mathrm{C} 42 / \mathrm{O} 42$), which again probably help redistribution of electron density to the other metal atoms.

Experimental

The syntheses of (I) and (II) were carried out according to the literature procedure of Lucas et al. (2002). Crystals were obtained by slow diffusion of methanol for (I) or ethanol for (II) into dichloromethane solutions of the complexes at 276 K .

Compound (I)

Crystal data

$\left[\mathrm{Mo}_{2} \mathrm{Ir}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{2}(\mathrm{CO})_{10}\right]$
$D_{x}=2.719 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1014.67$
Monoclinic, $P 2_{1} / c$
$a=9.890$ (1) A ${ }^{\circ}$
$b=16.563$ (1) \AA
$c=15.135$ (2) \AA
$\beta=91.67$ (1) ${ }^{\circ}$
$V=2478.2(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15.9-18.9^{\circ}$
$\mu=11.78 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prism, red-brown
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

Ir1-Ir2	$2.6896(6)$	Ir2-C12	$2.12(1)$
Ir1-Mo3	$2.871(1)$	Ir2-C21	$1.88(1)$
Ir1-Mo4	$2.832(1)$	Ir2-C22	$1.89(1)$
Ir2-Mo3	$2.8456(9)$	Ir2-C23	$2.18(1)$
Ir2-Mo4	$2.8744(9)$	Mo3-C13	$2.16(1)$
Mo3-Mo4	$3.100(1)$	Mo3-C23	$2.11(1)$
Ir1-C11	$1.90(1)$	Mo3-C31	$1.95(1)$
Ir1-C12	$2.07(1)$	Mo4-C41	$1.99(1)$
Ir1-C13	$2.16(1)$	Mo4-C42	$2.00(1)$
Ir1-C14	$1.90(1)$		
			$57.63(2)$
Ir2-Ir1-Mo3	$61.46(2)$	Ir2-Mo3-Mo4	$56.24(2)$
Ir2-Ir1-Mo4	$62.68(2)$	Ir1-Mo4-Ir2	$57.67(3)$
Mo3-Ir1-Mo4	$65.85(3)$	Ir1-Mo4-Mo3	$56.74(2)$
Ir1-Ir2-Mo3	$62.40(2)$	Ir2-Mo4-Mo3	$166(1)$
Ir1-Ir2-Mo4	$61.09(2)$	Mo3-C31-O31	$172(1)$
Mo3-Ir2-Mo4	$65.63(3)$	Mo4-C41-O41	$171(1)$
Ir1-Mo3-Ir2	$56.13(2)$	Mo4-C42-O42	
Ir1-Mo3-Mo4	$56.48(2)$		

Table 2
Short-contact geometry (\AA) for (I).

Ir2 \cdots C41	$2.95(1)$	Mo4 \cdots C31	$2.93(1)$
Ir2 \cdots C42	$3.12(1)$	Mo4 \cdots C13	$3.06(1)$

Data collection

Rigaku AFC-6S diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.047, T_{\text {max }}=0.095$
4826 measured reflections
4376 independent reflections
3501 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 19$
$l=-18 \rightarrow 18$
3 standard reflections
every 150 reflections
intensity decay: negligible

Refinement

Refinement on F
$(\Delta / \sigma)_{\text {max }}=0.001$
$R=0.033$
$\Delta \rho_{\text {max }}=2.25 \mathrm{e} \AA^{-3}$
$w R=0.038$
$S=1.84$
$\Delta \rho_{\text {min }}=-1.41 \mathrm{e}^{-3}$
3501 reflections
326 parameters
H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0001\left|F_{o}\right|^{2}\right]$

Extinction correction: Zachariasen (1967)

Extinction coefficient: $2.4(1) \times 10^{-7}$

Compound (II)

Crystal data
$\left[\mathrm{Mo}_{2} \mathrm{Ir}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{13}\right)_{2}(\mathrm{CO})_{10}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Mo $K \alpha$ radiation
$M_{r}=1134.28$
Orthorhombic, Fdd2
Cell parameters from 22 reflections
$a=38.199$ (4) A
$\theta=18.9-23.2^{\circ}$
$b=36.135$ (5) \AA
$\mu=9.18 \mathrm{~mm}^{-1}$
$c=9.303(4) \AA$
$V=12842(4) \AA^{3}$
$T=296.2 \mathrm{~K}$
$Z=16$
$D_{x}=2.347 \mathrm{Mg} \mathrm{m}^{-3}$
Plate, red-brown
$0.39 \times 0.18 \times 0.08 \mathrm{~mm}$

Table 3
Selected geometric parameters ($\left({ }^{\circ}{ }^{\circ}\right.$) for (II).

Ir1-Ir2	$2.6738(7)$	Ir2-C12	$2.06(1)$
Ir1-Mo3	$2.875(1)$	Ir2-C21	$1.91(1)$
Ir1-Mo4	$2.8926(9)$	Ir2-C22	$1.91(1)$
Ir2-Mo3	$2.880(1)$	Ir2-C23	$2.14(1)$
Ir2-Mo4	$2.8600(9)$	Mo3-C13	$2.08(1)$
Mo3-Mo4	$3.113(1)$	Mo3-C23	$2.16(1)$
Ir1-C11	$1.90(1)$	Mo3-C31	$1.95(1)$
Ir1-C12	$2.12(1)$	Mo4-C41	$1.95(1)$
Ir1-C13	$2.20(1)$	Mo4-C42	$1.97(1)$
Ir1-C14	$1.86(1)$		
Ir2-Ir1-Mo3	$62.41(2)$	Ir2-Mo3-Mo4	$56.85(2)$
Ir2-Ir1-Mo4	$61.69(2)$	Ir1-Mo4-Ir2	$55.39(2)$
Mo3-Ir1-Mo4	$65.32(3)$	Ir1-Mo4-Mo3	$57.07(2)$
Ir1-Ir2-Mo3	$62.22(2)$	Ir2-Mo4-Mo3	$57.48(2)$
Ir1-Ir2-Mo4	$62.92(2)$	Mo3-C31-O31	$162(1)$
Mo3-Ir2-Mo4	$65.67(3)$	Mo4-C41-O41	$170(1)$
Ir1-Mo3-Ir2	$55.37(2)$	Mo4-C42-O42	$174.9(9)$
Ir1-Mo3-Mo4	$57.61(2)$		

Table 4
Short-contact geometry (Å) for (II).

Ir1 \cdots C41	$2.88(1)$	Mo4 $\cdots \mathrm{C} 31$	$2.88(1)$
Ir1 C 42	$3.11(1)$	Mo4 $\cdots \mathrm{C} 23$	$2.99(1)$

Data collection

Rigaku AFC-6S diffractometer
$\omega / 2 \theta$ scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.205, T_{\text {max }}=0.480$
15709 measured reflections
3901 independent reflections
2937 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.061 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-49 \rightarrow 49 \\
& k=-46 \rightarrow 46 \\
& l=0 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: negligible }
\end{aligned}
$$

Refinement

Refinement on F
$R=0.023$
$w R=0.023$
$S=0.82$
2937 reflections
386 parameters

We thank the Australian Research Council (ARC) for financial support and the Johnson-Matthey Technology Centre for the generous loan of iridium salts. NTL was an Australian Postgraduate Awardee and MGH holds an ARC Australian Senior Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1125). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lee, J., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. \& White, A. H. (1993). Organometallics, 12, 3468-3473.

Lucas, N. T., Blitz, J. P., Petrie, S., Stranger, R., Humphrey, M. G., Heath, G. A. \& Otieno-Alego, V. (2002). In preparation.
Lucas, N. T., Humphrey, M. G. \& Hockless, D. C. R. (1997). J. Organomet. Chem. 535, 175-181.
Lucas, N. T., Humphrey, M. G. \& Rae, A. D. (2001). Macromolecules, 34, 61886195.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Waterman, S. M. \& Humphrey, M. G. (1999). Organometallics, 18, 3116-3127.
Waterman, S. M., Humphrey, M. G., Lee, J., Ball, G. E. \& Hockless, D. C. R. (1999). Organometallics, 18, 2440-2451.

Waterman, S. M., Humphrey, M. G., Tolhurst, V.-A., Bruce, M. I., Low, P. J. \& Hockless, D. C. R. (1998). Organometallics, 17, 5789-5795.
Waterman, S. M., Humphrey, M. G., Tolhurst, V.-A., Skelton, B. W., White, A. H. \& Hockless, D. C. R. (1996). Organometallics, 15, 934-940.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

